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Introduction

Space curve evolution appears in geometry, fluid dynamics, and
integrable systems.
Vortex filament motion (1972):

γ̇ = γ′′ × γ′, (binormal motion)

Hasimoto’s transform: q = κei
∫
τds ⇒ nonlinear Schrödinger eq.

iq̇ + q′′ + 2|q|2q = 0

Hasimoto H. A soliton on a vortex filament. Journal of Fluid Mechanics. 1972

Soliton and quasi-periodic solutions of nonlinear Schrödinger eq.
E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev.

Algebro-Geometric Approach to Nonlinear Integrable Equations. Springe 1994.

Differential geometric properties.
Calini, A., Ivey, T. Finite-Gap Solutions of the Vortex Filament Equation
: Genus One Solutions and Symmetric Solutions. J Nonlinear Sci. (2005)

: Isoperiodic Deformations. J Nonlinear Sci. (2007)
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Lund-Regge evolution (1978):

γ̇′ = γ′ × γ̇ ⇒ PLR equation for curvature/torsion

F. Lund, T. Regge. Unified approach to strings and vortices with soliton solutions. Phys. Rev.
(1978)

K. Pohlmeyer. Integrable Hamiltonian systems and interactions through quadratic constraints.

Comm. Math. Phys. (1976)

Soliton and quasi-periodic solutions of PLR eq.
E. Date. Multi-soliton solutions and quasi-periodic solutions of nonlinear equations of

sine-Gordon type. Osaka J. Math. (1982)

Differential geometric properties.
C. Chen, Y. Li. The Lund-Regge surface and its motion’s evolution equation. J. Math.
Phys. (2002)

Kobayashi, S., K. and Matsuura, N. The Evolution of a Curve Induced by the

Pohlmeyer-Lund-Regge Equation. J Nonlinear Sci. (2025)
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Our goal:

Reformulate the Lund-Regge evolution with a 2× 2 SU(2) Frenet
frame.

Encode curvature-torsion data in a Hasimoto-type field q and link it
to the PLR equation.

Produce explicit, quasi-periodic solutions via Riemann θ-functions and
reconstruct the curve evolution.
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The Lund-Regge evolution

Definition 1

A space curve evolution γ will be called the Lund-Regge evolution if the
following equation holds:

γ̇′ = γ′ × γ̇.

Furthermore, the Lund-Regge evolution will be called regular if γ′ × γ̇ 6= 0
holds.

Remark 0.1

In the original definition by Lund and Regge [LundRegge78], the following
constraints were also imposed:

|γ′| = ℓ, |γ̇| = ℓ−1, ℓ > 0.

However, these additional conditions are not essential.
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Theorem 2 (Kobayashi, K, Matsuura25)

Regarding the Lund-Regge evolution, we have the following:

(1) Let γ be the Lund-Regge evolution such that |γ′| = 1. Then it
satisfies

γ̇ = −
∫ s

κ̇κ dsT − κ̇N − κ
∫ s

τ̇ dsB,

and its Frenet frame F evolves according to following

F ′ = FL,where L =
1

2

(
iτ −κ
κ −iτ

)
, (1)

Ḟ = FM,whereM =
1

2

(
i
κ

(
−κ̇′ + κ

∫ s
τ̇ dsτ

)
−κ

∫ s
τ̇ ds+ iκ̇

κ
∫ s
τ̇ ds+ iκ̇ − i

κ

(
−κ̇′ + κ

∫ s
τ̇ dsτ

)) .
Moreover, the curvature κ and torsion τ of γ satisfy the pair of PDEs

κ̇′

κ
− (τ − 1)

∫ s

τ̇ ds+

∫ s

κκ̇ds = 0,

(
κ

∫ s

τ̇ ds

)′

+ κ̇(τ − 1) = 0,

which is the compatibility condition between (1).
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Theorem 3 (Kobayashi, K, Matsuura25)

(2) Conversely, let κ and τ be solutions to the system

κ̇′

κ
− (τ − 1)

∫ s

τ̇ ds+

∫ s

κκ̇ds = 0,

(
κ

∫ s

τ̇ ds

)′

+ κ̇(τ − 1) = 0,

and let γ be the evolution determined by

γ̇ = −
∫ s

κ̇κ dsT − κ̇N − κ
∫ s

τ̇ dsB,

where the integration and derivative are taken with respect to the
length element. Then |γ′| does not depend on t and thus γ gives an
isoperimetric curve flow. Moreover, by choosing the arc-length
parametrization |γ′| = 1 of γ, the curve γ satisfies the Lund-Regge
evolution γ̇′ = γ′ × γ̇ with unit-speed.
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Corollary 4 (Kobayashi, K, Matsuura25)

By choosing the diagonal gauge D = diag(exp(−ip), exp(ip)), where
p = 1

2

∫ s
(τ − 1)ds− π

2 and introducing the complex-valued function

q = κ exp

(
i

∫ s

(τ − 1)ds

)
,

the evolution of the gauged Frenet frame F = FD can be rephrased as

F ′ = FL, L =
1

2

(
i q
−q̄ −i

)
,

Ḟ = FM, M =
i

2

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
.

The compatibility condition of the above system can be computed as
{Re (q̇′/q)}′ = −1

2

(
|q|2

)·
, and Im (q̇′/q) = 0, which are equivalent to the

following nonlinear PDE:

q̇′ +
1

2
q

∫ s (
|q|2

)·
ds = 0.
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Corollary 5 (Kobayashi, K, Matsuura25)

There exists a family {F λ}λ>0 such that F λ satisfies the following system
of PDEs:

(F λ)′ = F λLλ, Lλ =
1

2

(
iλ q
−q̄ −iλ

)
,

(F λ)· = F λMλ, Mλ =
i

2λ

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
.
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Recall that the Euclidean three-space R3 can be identified with su(2) by(
p q r

)T ∈ R3 ←→ 1

2

(
ir −p− iq

p− iq −ir

)
∈ su(2).

Theorem 6 (Kobayashi, K, Matsuura25)

Let q be a solution of q̇′ + 1
2q

∫ s (|q|2)· ds = 0, and F (= F λ) the solution
of the Lax pair

(Fλ)′ = FλLλ, Lλ =
1

2

(
iλ q
−q̄ −iλ

)
,

(Fλ)· = FλMλ, Mλ =
i

2λ

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
.

Define an su(2)-valued map

γ = λ(∂λF )F
−1|λ=1,

where ∂λ = ∂
∂λ . Then under the identification R3 ∼= su(2), γ is the

Lund-Regge evolution γ̇′ = γ′ × γ̇ with |γ′| = 1. Conversely, all
Lund-Regge evolutions can be obtained by this way.
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From the foregoing discussion, an explicit description of the Lund-Regge
evolution requires constructing a solution̶ i.e., a wave function of the Lax
pair

(Fλ)′ = FλLλ, Lλ =
1

2

(
iλ q
−q̄ −iλ

)
,

(Fλ)· = FλMλ, Mλ =
i

2λ

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
,

While several approaches to building such wave functions are known, we
next introduce solutions of the following two types:

1 N -soliton solutions given by the Date Direct method [Date82]

2 Quasi-periodic solutions in terms of Riemann theta function
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Date’s N-Soliton Solutions

We consider (2× 2)-matrix-valued function Ψ(s, t, λ) = (Ψjk(s, t, λ)) of
the following forms

Ψ11(s, t, λ) = (λN +
∑N−1

j=0
ψ1j(s, t)λ

j) exp(2−1i(λs+ λ−1t)),

Ψ21(s, t, λ) = −(
∑N−1

j=0
ψ2j(s, t)λ

j) exp(−2−1i(λs+ λ−1t)),

Ψ12(s, t, λ) = −Ψ12(s, t, λ̄), Ψ22(s, t, λ) = Ψ11(s, t, λ̄).

Let αj be mutually distinct complex numbers such that for all j Imαj have same
signature and cj be arbitrary complex numbers,then we determine ψij(s, t) by the
following system of linear equations(

EA −CE−1A

CE−1A EA

)
t(ψ10, · · · , ψ1,N−1, ψ20, · · · , ψ2,N−1)

= −t(αN
1 e(α1), · · · , αN

Ne(αN ), c1αN
1 e(ᾱ1), · · · , cNαN

Ne(ᾱN ))

where A is the (N ×N)matrix with (j, k)-elements αk−1
j and E,C are diagonal

matrices of order N with entries e(αj), cj ,respectively and

e(λ) = exp(2−1i(λs+ λ−1t)).
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From [Date82, section 3], we can see that the function Ψ(s, t, λ) is a wave
function of the following Lax pair

Ψ−1Ψ′ =
1

2

(
iλ q
−q̄ −iλ

)
, Ψ−1Ψ̇ =

i

2λ

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
,

where q = iψ̄2,N−1.

Proposition 0.2 (Kobayashi, K, Matsuura25)

The explicit formula for the N -soliton curves
γ(s, t) = (γ1(s, t), γ2(s, t), γ3(s, t))

T is given as follows:

γ1(s, t) = −2 Im
[
f̄∂λg − g∂λf̄
|f |2 + |g|2

e−2ik

]∣∣∣∣
λ=1

,

γ2(s, t) = 2Re

[
f̄∂λg − g∂λf̄
|f |2 + |g|2

e−2ik

]∣∣∣∣
λ=1

,

γ3(s, t) = s− t+ 2 Im

[
f̄∂λf − g∂λḡ
|f |2 + |g|2

]∣∣∣∣
λ=1

.

where k(λ) = (λs+ λ−1t)/2, f(λ) = λN +
∑N−1

j=0 ψ1j(s, t)λ
j , g(λ) =

−(
∑N−1

j=0 ψ2j(s, t)λ
j)
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(a) PLR 1-soliton (b) PLR 2-soliton (c) PLR 3-soliton

Figure: Swept surfaces formed by the curves with 1, 2, and 3-soliton solutions for
the PLR equations.
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(a) s-G 1-soliton (b) s-G 2-soliton (c) s-G 3-soliton

Figure: Swept surfaces formed by the curves with 1, 2, and 3-soliton solutions for
the sine-Gordon equations.
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(a) A space curve at time t = 0 (b) The curves of t=0,1,2 and its swept
surface

Figure: A curve evolution determined from a 4-soliton solution of the PLR equation
and its swept surface by the curves.
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Hyperelliptic Riemann surface

Let R be a genus-g hyperelliptic Riemann surface defined by

µ2 =

g+1∏
j=1

(λ− λj)(λ− λ̄j), λj 6= λk(j 6= k), λj 6= λ̄k, λj 6= 0.

Let P±
∞ and P±

0 be the points over λ =∞ and 0, with local parameters
z = λ−1 near P±

∞, and λ near P±
0 .
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Anti-holomorphic Involution and Homology Basis

There exists a fixed-point-free anti-holomorphic involution

σ : (µ, λ) 7→ (−µ̄, λ̄)

on the Riemann surface R.
Let {a1, . . . , ag, b1, . . . , bg} be a homology basis of R, satisfying

ai · aj = bi · bj = 0, ai · bj = δij .

We choose a canonical basis such that

σ(aj) = aj ,

σ(bj) = −bj +
∑
k ̸=j

ak, j = 1, . . . , g.

This homology basis is illustrated in the following figure.

Y. Kogo (Hokkaido Univ.) August 29, 2025 18 / 35



λg+1

λ̄g+1

λ1

λ̄1

a1

λ2

λ̄2

a2

λg

λ̄g

ag

b1

b2

bg

·
∞

Figure: Homology basis for hyperelliptic Riemann surface R
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Let ω1, . . . , ωg be holomorphic differentials on R, normalized by∫
ak

ωj = 2πi δkj , j, k = 1, . . . , g.

Define the period matrix τ = (τjk) by

τjk =

∫
bk

ωj .

The associated Riemann theta function is given by

θ(u) =
∑
n∈Zg

exp
(
1
2nτ

tn+ ntu
)
.

The series is absolutely convergent; this follows from the fact that Re τ is
a negative-definite matrix. Moreover, if ek are the standard basis vectors
of Cg and τ k = τek, for k = 1, . . . , g, then

θ(u+ 2πiek) = θ(u), θ(u+ τ k) = exp(−1

2
τkk − uk)θ(u).
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Under this choice of homology basis, the period matrix τ satisfies the
following property:

Im τjk =

{
π if (j, k) 6= (ℓ, ℓ),

0 if (j, k) = (ℓ, ℓ).

Moreover, the Riemann theta function satisfies the conjugation symmetry:

θ(u) = θ(ū).

Let Γ be the lattice in Cg generated by the columns of the matrix
(2πiI | τ). The Jacobian variety of R is defined as

Jac(R) = Cg/Γ.

The map

AQ(P ) =
(∫ P

Q
ω1, . . . ,

∫ P

Q
ωg

)
mod Γ,

is called the Abel-Jacobi map.
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Let Ωj and dΩj (j = 1, 2, 3) be the normalized Abelian integrals and
differentials defined by:

Ω1(P ) =

∫ P

λ̄g+1

dΩ1 ∼ ±
(
1

z
− E

2

)
as P → P±

∞,

Ω2(P ) =

∫ P

λ̄g+1

dΩ2 ∼ ±
(
1

λ
− F

2

)
as P → P±

0 ,

Ω3(P ) =

∫ P

λ̄g+1

dΩ3 ∼ ∓
(
log z − πi

2 + 1
2 log β

)
as P → P±

∞, β > 0.

Let the b-periods of these differentials be

Uj =

∫
bj

dΩ1, Vj =

∫
bj

dΩ2, rj =

∫
bj

dΩ3 =

∫ P+
∞

P−
∞

ωj , j = 1, . . . , g,

and define the vectors U = (U1, . . . , Ug), V = (V1, . . . , Vg),
r = (r1, . . . , rg).
Then the wave function can be constructed as follows.
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Proposition 0.3

The wave function in terms of Riemann theta function

Ψ =
1√

|ψ1|2 + |ψ2|2

(
ψ1 ψ2

−ψ̄2 ψ̄1

)
.

is given by:

ψ1 = −i exp
[
is
2 (Ω1 +

E
2 ) +

it
2 (Ω2 − H

2 ) + Ω3

] θ(A−(P )−W −D− r)

θ(W +D)
,

ψ2 = exp
[
is
2 (Ω1 − E

2 ) +
it
2 (Ω2 +

H
2 )

] θ(A−(P )−W −D)

θ(W +D)
.

where W = − is
2 U−

it
2 V, D = A−(δ) +K−,

H
2 =

∫ P+
∞

λ̄g+1
dΩ2.

Here A− and K− are the Abel map and Riemann constant with base point P−
∞.

δ is a degree-g divisor.
The solution of PLR equation is given by

q = 2i
√
β exp(−isE + itH)

θ(W +D− r)

θ(W +D)
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Proof.

To prove this, it suffices to construct a function ψ = (ψ1, ψ2) satisfying
the following system of linear differential equations:

ψ′ = ψLλ, Lλ =
1

2

(
iλ q
−q̄ −iλ

)
,

ψ̇ = ψMλ, Mλ =
i

2λ

(
−Re (q̇′/q) −q̇
− ˙̄q Re (q̇′/q)

)
.

For this purpose, we construct functions on the Riemann surface R
satisfying the following conditions:

ψj is meromorphic on R \ {P±
∞, P

±
0 } with poles on a positive divisor

δ of degree g, such that dimL(δ) = 1 and σδ − δ − P−
∞ + P−

∞ ≡ 0
mod Γ.
Near P±

∞ and P±
0 , Φ satisfies:

ψ ∼ α
z

[
(1, 0) +O(z)

]
eis/(2z), P → P+

∞, α ∈ C,

ψ ∼
[
(0, 1) +O(z)

]
e−is/(2z), P → P−

∞,

ψ ∼ O(1) e±it/(2λ), P → P±
0 .
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Proof(Cont.)

From the conditions on the pole divisor of ψ and the essential singularities
near P±

∞ and P±
0 , it follows that ψ satisfies the above system of linear

differential equations. We now proceed to construct ψ explicitly.
A basic property of the theta function is that for a g-degree positive
divisor δ with dimL(δ) = 1, the function

θ(A−(P )−A−(δ)−K−)

has zeros at the g points specified by δ. Using this fact together with the
Abelian integrals defined earlier, we obtain:

ψ1 = −iα
√
β exp

[
is
2

(
Ω1 +

E
2

)
+ it

2

(
Ω2 − H

2

)
+Ω3

]
× θ(A−(P )−W −D− r) θ(D− r)

θ(A−(P )−D) θ(W +D)
,

ψ2 = exp
[
is
2

(
Ω1 − E

2

)
+ it

2

(
Ω2 +

H
2

)]
× θ(A−(P )−W −D) θ(D)

θ(A−(P )−D) θ(W +D)
.
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Proof(Cont.)

The constant term in ψ2 after removing the essential singularity at P−
∞

gives the PLR solution q, expressed as:

q = 2iA e−isE+itH θ(W +D− r)

θ(W +D)
, A =

θ(D)

α θ(D− r)
.

From the choice of the Riemann surface and the properties of the
anti-holomorphic involution σ, the requirement that the (2, 1)-component
of Lλ equals −q̄ implies A =

√
β, yielding the explicit expression for q.

Finally, the desired ψ can be obtained from the above formulas by
removing the (s, t)-independent terms such as θ(A−(P )−D).
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Evolution of the Curve

Theorem 7

The curve associated with the Pohlmeyer-Lund-Regge equation evolves via

Ψ =
1√

|ψ1|2 + |ψ2|2

(
ψ1 ψ2

−ψ̄2 ψ̄1

)
, γ =

(
d

dλ
Ψ

)
Ψ−1

∣∣∣∣
λ=1

.

The components γ11, γ21 are:

γ11 =
i
2

(
dΩ1

dλ
s+

dΩ2

dλ
t

)
+ 1

2ρ

(
|ψ1|2∇ log θ(A−−φ−r)

θ(A−+φ−r) + |ψ2|2∇ log θ(A−−φ)
θ(A−+φ)

)
· dA−
dλ

∣∣∣∣
λ=1

,

γ12 =
ψ1ψ2

ρ

(
∇ log θ(A−−φ)

θ(A−−φ−r) ·
dA−
dλ

+
dΩ3

dλ

)∣∣∣∣
λ=1

,

where ρ = |ψ1|2 + |ψ2|2, φ = W +D.

Y. Kogo (Hokkaido Univ.) August 29, 2025 27 / 35



Proof.

We now focus on the case λ = 1, i.e. λ ∈ R. Denote by P ∈ R the point
lying above that real value. Because the anti-holomorphic involution σ and
the sheet change ι satisfy σι(P ) = P on the real slice, we immediately
obtain,

Ωj(P ) = Ωj(P ) (j = 1, 2, 3),

and modulo the period lattice Γ,

A(P ) = A(P ), D = −D, r = r.

Since each ψj is a single-valued function, we may regard the equalities as
genuine identities rather than only modulo Γ.
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Proof (Cont.)

Compute γ11:

γ11 = −
1

2

d

dλ
log

(
|ψ1|2 + |ψ2|2

)
+

1

|ψ1|2 + |ψ2|2
(
ψ1

d
dλψ1 + ψ2

d
dλψ2

)
=

1

2

1

|ψ1|2 + |ψ2|2
(
|ψ1|2

d

dλ
log

(ψ1

ψ1

)
+ |ψ2|2

d

dλ
log

(ψ2

ψ2

))
.

By using the reality relations written above and θ(u) = θ(ū), we find

ψ1

ψ1

= exp
(
isΩ1(P ) + itΩ2(P )

)θ(A−(P )− φ− r
)

θ
(
A−(P ) + φ− r

) ,
ψ2

ψ2

= exp
(
isΩ1(P ) + itΩ2(P )

)θ(A−(P )− φ
)

θ
(
A−(P ) + φ

) ,
and substituting these expressions yields the desired formula.
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Example

(a) A space curve at time t = 0, s ∈ [−5, 5] (b) t ∈ [−5, 5], s ∈ [−5, 5]

Figure: A curve evolution determined from a solution of the PLR equation and its
swept surface by the curves.(λ1 = 3 + i, λ2 = 1 + i)
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Example

(a) A space curve at time
t = 0, s ∈ [−3, 3]

(b) t ∈ [0, 5], s ∈ [−3, 3] (c) t ∈ [0, 10], s ∈ [−3, 3]

Figure: A curve evolution determined from a solution of the PLR equation and
its swept surface by the curves.(λ1 = 1.00345691719 + 0.5i, λ2 =
−1.00345691719 + 0.5i)
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Forthcoming research

Closure condition of the curve

How relate to sine-Gordon equation

Visualization in terms of higher genus Riemann theta function

Y. Kogo (Hokkaido Univ.) August 29, 2025 32 / 35



References I

E. Date.
Multi-soliton solutions and quasi-periodic solutions of nonlinear
equations of sine-Gordon type.
Osaka J. Math. 19 (1982), 125–158.

K. Pohlmeyer
Integrable Hamiltonian systems and iteractions through quadratic
constraints.
Comm. Math. Phys. 46,(1976), 207–221.

F. Lund, T. Regge.
Unified approach to strings and vortices with soliton solutions.
Phys. Rev. D 14, no. 6 (1978), 1524–1535.

Y. Kogo (Hokkaido Univ.) August 29, 2025 33 / 35



References II

S-P. Kobayashi, Y. Kogo, N. Matsuura
The evolution of a curve induced by the Pohlmeyer-Lund-Regge
equation.
J. Nonlinear Sci. 35, 85 (2025).

Y. Kogo (Hokkaido Univ.) August 29, 2025 34 / 35



Thank you
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